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Abstract

A vortex line, shaped by a zigzag of pinning centers, is described here through a three-dimensional

unit cell containing two pinning centers positioned symmetrically with respect to its center. The

unit cell is a cube of side L = 12ξ, the pinning centers are insulating spheres of radius R, taken

within the range 0.2ξ to 3.0ξ, ξ being the coherence length. We calculate the free energy density

of these systems in the framework of the Ginzburg-Landau theory.
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I. INTRODUCTION

Superconductors have many kinds of imperfections, that is, internal regions where Cooper

pairs either don’t exist at all or exist purely as a fluctuation effect. Thus the macroscopic

wave function, describing the collective state, vanishes abruptly or asymptotically inside such

regions. In presence of an external magnetic field vortices arise inside the superconductor

and are strongly attracted to such imperfections, also called pinning centers. For this reason

pinning centers have been extensively studied in the past in many ways, including artificially

made ones, such as columnar defects1, antidots2,3 and micro holes4. They are interesting

because they bring clear-cut questions about the interaction between vortices and pinning

centers5,6, such as how local misalignment really occurs inside the superconductor. Vortices

lines should be aligned to the applied field but the presence of strong attraction to a pinning

center can change this locally. As a result of competing energetic demands new interesting

phenomena can take place in vortex Physics, such as the one considered here. A vortex line

in the absence of pinning centers is aligned along the magnetic induction direction, hereafter

called z-axis. The presence of a zigzag of pinning centers forces the vortex line to bend and

acquire this shape, resulting into local misalignment, though it remains oriented along the

magnetic induction.

Pinning forces act on the vortex core whose radius is given by the coherence length ξ.

The interaction of pinning centers with vortices has been studied using several approaches7.

From the point of view of the Ginzburg-Landau theory, pinning may be caused by spatial

fluctuations of the critical temperature8, Tc(~x), or of the mean free-path9 that changes the

coefficient in front of the gradient term, ξ(~x)2|(~∇ − 2πi
Φ0

~A)∆|2. The interaction between a

vortex line and a pinning center has been considered by many authors in the context of

the Ginzburg-Landau theory9,10. The number of vortex that can be trapped by a defect

is an interesting problem. In case of a columnar defect the saturation number has been

determined long ago by Mkrtchyan and Shmidt11: ns = λ/2ξ, though this formula has to

change near the upper critical field12. Recently the saturation number has been discussed

for three dimensional cavities13.

The system under investigation here consists of a vortex line trapped by a zigzag of very

large pinning centers, namely, spherical insulating cavities, with radius taken to vary from

0.2ξ to 3.0ξ. For these pinning centers the boundary-value problem has to be taken into
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account, as usually treated since the de Gennes boundary condition14must be satisfied at the

cavity surface. We chose to describe this system through a unit cell with two cavities inside,

that rotate freely around its center, producing for each angle a distinct zigzag arrangement.

In this paper we analyze numerically the angular dependence of the Helmholtz free energy

Fc(θ, R) and propose an expression for it.

This paper is organized as follows. In section II we present the model for a 3-D super-

conducting media with the cavities. In section III, we discuss out theoretical approach. In

sections IV and V we show the results obtained through numerical simulations. In section

VI we summarize the main results of the work.

II. THE MODEL

The system studied here consists of a cubic unit cell with size L equal to 12ξ, and

two insulating cavities of radius R, as specified by the figure 1. The line segment joining

the cavities makes an angle θ ranging from 0◦ to 180◦, taken here in increments of 3◦.

Notice that because of symmetry θ varying from 0◦ to 90◦ is sufficient to obtain all possible

configurations.

q

R

R

L

L

D

FIG. 1: The plane of rotation of the cavities inside the unit cell. The distance D between the two

cavities is equal to L/2. The superconductor fills the remain of the unit cell, shown here as a gray

region.

Figure 1 shows the plane of rotation (plane y) and parameters associated to the unit cell.

While θ and R are freely changed, D, the distance between the center of the cavities, is

fixed and equal to L/2. Thus the present model features a distance between the two cavities
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independent of the cavity radius.

Our numerical treatment demands a mesh grid to describe the unit cell. The length of

the cube side is 12ξ, and we choose the number of mesh points along a given direction,

P , to be 19. This choice implies that distance between two consecutive mesh points, a, be

equal to 2ξ/3. The value of a must be smaller than the coherence length ξ, which is the

minimum physical scale of the Ginzburg-Landau theory. The number of grid points inside

the cavity should be large enough to describe it. This number is obtained from the ratio

between the two volumes, of the cavity and of the cube. Since the entire cube has P 3 points,

the number of grid points inside the cavity is 4
3
π(R

a
)3(1 + a

L
)3. For instance, a cavity of

radius R = 1.0ξ has approximately 16 points, whereas the R = 2.0ξ sphere has 8 times more

points. Obviously in the limit of a cavity with radius smaller thant the mesh distance, that

is R < a = 2/3ξ, there will be just one point in the mesh describing the cavity. In this case

the order parameter does not vanish inside the defect but just undergoes a drop on its value.

III. THEORETICAL APPROACH

We start our considerations for the energy density functional of the Ginzburg-Landau

theory15, expressing it in units of the critical field energy density13, H2
c /4π. The periodicity

of the problem requires a search of the free energy minimum for a fixed integer, the number

of vortices inside the unit cell.

This integer also fixes the magnetic induction ~B(~x), which is the average of the local field

taken over the unit cell volume,

~B =
1

v

∫

v

~hd3r. (1)

The magnetic induction is completely determined by the vorticity of the system because

the overall current circulation vanishes inside the unit cell. The relationship between the

vorticity of the system ~νφ0 and the magnetic induction ~B(~x) in reduced units is,

~B(~x) = 2πκ

(

ξ

L

)2

~ν, (2)

where ~ν = nxx̂ + nyŷ + nz ẑ is the vorticity in an arbitrary direction. In the present paper

we consider ~ν = ẑ and present some results concerning the ~ν = 2ẑ case. The parameter

κ = λ/ξ is the dimensionless Ginzburg-Landau parameter and λ is the penetration depth.
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Here we consider the no magnetic shielding limit. The field penetrates in the superconductor

with no Meissner-Ochsenfeld effect. In this regime ~h(~x) = ∇ × ~A(~x) = ~B. This situation

can be viewed as a large κ limit. In reduced units the free energy density is normalized by

the critical field density, H2
c /4π, and the order parameter density is dimensionless, varying

between 0 and 1.

Fc =
∫

dv

V
τ(~x)

[

ξ2
∣

∣

∣

∣

(~∇−
2πi

Φ0

~A)∆
∣

∣

∣

∣

2

− |∆|2
]

+
1

2
|∆|4 , (3)

The function τ(~x) is a step-like function used to specify the cavities in this approach13.

Explicitly we have τ(~x) = τ1(~x)τ2(~x) and

τi(~x) = 1 −
2

1 + e(|~x−~xi|/R)N
, (4)

where τi is equal to 0 inside and 1 outside the ith cavity. The above explicit representation

of the τ function is necessary for computational reasons and for accuracy we take that

N = 8. In the limit N → ∞, the function τ tends to the well-known Heaviside function,

τ(~x) = Θ
(

|~x−~x1|
R

− 1
)

Θ
(

|~x−~x2|
R

− 1
)

.

Since we are in the no shielding limit, the vector potential ~A(~x) is determined from Eqs.

1, 2 and the condition of magnetic flux quantization inside the unit cell. The vector potential

does not participate in the minimization process of the free energy density that only takes

into account the real and imaginary parts of the order parameter. The free energy density

contains two terms. The first term is the condensation energy density, −τ(~x) |∆|2 + 1
2
|∆|4,

which in case of no vortices (|∆|2 = 1) and no cavity (τ = 1) has the value -0.5. The

presence of a cavity raises the energy since inside it the density vanishes (|∆|2 = 0). And

the second term, the kinetic energy density, τ(~x)ξ2
∣

∣

∣(~∇− 2πi
Φ0

~A)∆
∣

∣

∣

2
. Notice that there is

kinetic energy in case of no vortices but with a cavity. At the insulating-superconducting

interface τ changes from 1 to 0 and this causes a bending of the order parameter, which has

some kinetic energy cost.

The most significant advantage of the present method, is that the free energy functional,

Eq. 3, contains the appropriate boundaries conditions to the problem. This removes the

necessity of solving the theory in two independent regions and later applying the Neumman

boundary conditions. Besides the present method easily applies to internal regions of any

shape, not just spherical, and finds its solution for the given normal-superconductor interface.
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IV. RESULTS

For a given pinning arrangement, which means fixed values of θ and R, and the condition

of one vortex in the unit cell, we carry the minimization of the free energy. Here we present

the results of several independent simulations obtained for the pairs (θ, R), ranging from

(0◦, 0.2ξ) to (180◦, 3.0ξ), in increments of 3◦ for θ, and of 0.2ξ for R. For each simulation we

initialize the order parameter in a random way and the minimization procedure is carried for

each temperature18. Then the temperature is lowered until a convergence criteria is reached,

which means that the free energy has become stable. For each simulation we implement at

least 1200 Monte Carlo visits per mesh point in a Metropolis algorithm.

Our main results are shown in the two main curves of figure 3. The figure 2(a) shows

several curves of the free energy density versus the angle θ, each curve associated to a different

R value. Similarly the figure 2(b) shows several free energy density versus R curves, each

corresponding to a distinct value of θ. The figure 2(a) shows that mirror symmetry θ ↔ π−θ

holds as expected, since the two cavities inside the unit cell are equivalent. The free energy

Fc(θ, R) is an even function in θ.

In our previous work16,17 we have found the remarkable property that cavities inside a

superconductor can lower its energy as compared to the cavity-free superconductor. This

effect can be verified here in figure 2(b), which display a set of points lying under the

energy threshold of −0.434, the free energy Fc(θ, R = 0), of the system without cavities,

approximated by Fc(θ = 0, R = 0.2), as previously discussed. In summary we found here

several pinning configurations, each described by the pair of values (θ, R), that have lower

energy than the cavity free system. Table I exhibits these pairs (θ, R) of lower energy.

TABLE I: Pair of values (θ,R) that establishing a configuration with lower energy than the cavity-

free superconductor.

θ (degree) 0 - 3 0 - 15 0 - 24 0 - 12 0 - 27 0 - 24 0 - 21 0 - 9

R (ξ) 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8

The curve of figure 2(b) shows monotonic growth17 for the free energy, but only for R

equal or larger than 1.2ξ. It also shows a local maximum for the free energy at R = 1.0ξ.

In fact the behavior is distinct for the two regimes, R > 1.0ξ and R ≤ 1.0ξ. To understand

the R > 1.0ξ case lut us hold the angle fixed, and vary the cavity radius. One finds that the
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FIG. 2: Dependence of the free energy, Fc, with the pinning center radius R and the angle θ.

2(a) Variation of Fc as a function of the angle θ in the range 0◦ to 180◦, data points obtained for

increments of 3◦. The radius R varies from 0.2ξ to 3.0ξ and for each increment of 0.2ξ results in a

distinct curve, all plotted in ascendant order from bottom to top.

2(b) Variation of Fc as a function of the pinning center radius for a specific value of θ. The radius

varies from 0.2ξ to 3.0ξ with an increment of 0.2ξ. Distinct curve correspond to different θ, equal

to 0◦, 9◦, 18◦, 27◦, 36◦, 45◦, 54◦, 63◦ and 72◦ in the ascendant order form bottom to top.

free energy density is given by a constand density times the volume of the unit cell, V0 = L3,

removed of the non-superconductor volume of the cavities, Vc = 8/3πR3. This result is

only approximately valid since the curvature of the order parameter near the pinning sphere

surface causes an increase in the kinetic energy, an effect that becomes more pronounced for

large spheres. Thus we have that for R > 1.0ξ,

Fc(θfixed, R) ∝ Fcf

(

1 −
8πR3

3L3

)

, (5)

where Fcf
∼= Fc(0

◦, 0.2ξ) = −0.434 is the cavity-free energy. The monotonic growth seen in

figure 2(b) is well described by the cubic R dependence of Eq. 5.

The dependence with the angle θ exhibited in figure 2(a) may be described by the ex-

pression

Fc(θ, Rfixed) ∝ fk(Rfixed) sin2 θ (6)
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where the function fk(R) incorporate all the kinetics effects produced by the presence of

the cavities with radius R. In figure 2(a), fk(R) provides the amplitude of oscillation for a

fixed R. As we have mentioned before, the kinetic effects become more pronounceable as

the cavity radius increase. We assume that fk is a linear function of R.

We add Equations 5 and 6 together to obtain a general free energy expression to describe

arbitrary angles of rotation and radii bigger than the coherence length:

Fc(θ, R) = Fcf

(

1 −
Vc

V0

)

+ fk(R) sin2 θ. (7)

For all radii, the configurations of minimum and maximum energies are obtained for 0◦

and 90◦, respectively. The maximum at θ = 90◦ has a smaller superconducting volume as

compared to the minimum at θ = 0◦ configuration. This is easy to understand because

the 0◦ configuration has the two spheres aligned along the z-axis and both overlap with the

vortex line, whereas the 90◦ configuration only one overlaps the vortex line. The other one is

free in space thus taking away space that could be otherwise superconducting. This makes

the 90◦ configuration closer to the normal state than the 0◦ one. At some intermediate angle

between 0◦ and 90◦ a depinning transition takes place, although it is not noticeable in both

figures 2(a) and 2(b). This transition has been studied in Ref.16. The function fk(R) is

easily obtained by taking its difference at extreme angles, Fc(θmax, R) −Fc(θmin, R), where

θmax = 90◦ and θmin = 0◦. This difference is shown in figure 3 as a function of R. Thus

Eq. 7, the major conclusion of this paper, gives a good description of the free energy for all

(θ, R) pairs.

In the limit that R → 0, the free energy should converge to the cavity free superconductor,

Fcf , whose energy only depends on the unit cell vorticity. Thus the term fk should vanish

in this limit R → 0 so that the angular dependence sin2 θ disappears from the free energy:

lim
R→0

fk(R) → 0. (8)

We determine the fk(R) term fitting the curve of the figure 3 with the best linear function.

In this way, the function found is:

fk(R) = −0.00358 + 0.00962R. (9)

The linear dependence of the Eq. 9 with the radius R reflects the importance of the kinetic

energy, ξ2
∣

∣

∣(~∇− 2πi
Φ0

~A)∆
∣

∣

∣

2
, which describes the bending of the order parameter at the surface

of the cavities, that becomes more important for large cavities.
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FIG. 3: Amplitude of oscillation. Fc(90
◦, R) −Fc(0

◦, R)

Substituting all the terms in Eq. 7 by the terms obtained in the fitting and the parameters

of the system, the energy dependence is expressed by following equation:

Fc(θ, R) = Fcf

(

1 −
8πR3

3L3

)

+ (0.00962R − 0.00358) sin2 θ. (10)

The negative constant −0.00358 is in conflict with the condition expressed by Eq. 8. In fact

in the region R ≤ 1.0ξ, Eq. 9 does not apply because of mesh effects. Besides for such small

R the present Ginzburg-Landau approach is not applicable, as previously discussed.

V. MANY VORTICES NEAR THE ZIGZAG OF CAVITIES

So far we have described the case of just one vortex near a zigzag of cavities, ~ν = 1ẑ. In

this section we briefly comment on the general case of many vortices along the z direction,

~ν = nz ẑ. As nz increases the upper critical field is approached and beyond the upper critical

field there is also a surface superconductivity state at the surface of the cavities. The radius

of the cavities R and the angle of rotation θ sets new geometric configurations in the unit

cell that lead to multiple trapping and giant vortex states in the superconductor13. A simple

example of such configurations is shown in figure 4, which displays two vortices in the unit

cell (nz = 2 case) for R = 1.8ξ at the two extreme angles, θ = 0◦, and θ = 90◦. For

θ = 0◦ the system presents strong competition between the vortex-vortex repulsion and the

vortex-cavity attraction. While one of the vortices is barely trapped by the cavities the

other vortex is not pinned. The rotation of the cavities to the θ = 90◦ configuration yields
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(a) (b)

FIG. 4: Iso-surfaces of the order parameter |∆(~x)|2 inside the unit cell, a cube with side L = 12ξ

containing cavities (in red) with radius R = 1.8ξ. The figure 4(a) corresponds to θ = 0◦ and shows

just one vortex line trapped by the defect, whereas the other one is not pinned and repelled due

to vortex-vortex repulsion. In the figure 4(b) the cavities form an angle θ = 90◦ and each vortex

is trapped by an independent cavity.

a state of two vortices each one trapped by a distinct cavity. For values of nz bigger than 2

more complex situations are possible and will be studied elsewhere.

VI. CONCLUSIONS

We have carried here a Ginzburg-Landau theory study of a vortex line near a zigzag of

pinning centers. The pinning centers are insulating spherical cavities and their arrangement

is well described by a unit cell containing two of them. Inside the unit cell the rotation

of the two cavities around the center produces a continuous of zigzag arrangements whose

effects on the vortex line are here discussed. We observe distinct behavior for cavity radius

above and below 1.0ξ. Sweeping the angle of rotation of the cavities around its center, θ,
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makes the zigzag more pronounced to the point that the vortex line decouples from it above

the critical angle θc, as previously found13. Below this angle the vortex line is pinned by

both cavities and above by just one. Here we have determined that the free energy density

has a simple analytical dependence, expressed by the Eq. 7.
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